数据驱动的智能交通虚拟仿真系统研究与设计

时间:2023-05-28 11:48:04 公文范文 来源:网友投稿

摘要:主要研究大数据环境下数据驱动的智能交通虚拟仿真系统体系结构及其关键技术。首先对数据驱动进行简要描述,并引出相关研究的现实意义。随后提出数据驱动的智能交通虚拟仿真系统体系结构,从面向智能交通虚拟仿真的数据处理、数据驱动技术、决策支持理论与方法、虚拟仿真环境等方面讨论了实现数据驱动的智能交通虚拟仿真所需解决的主要问题和关键技术,支持交通工程研究和应用。

关键词:数据驱动;虚拟仿真;在线仿真;智能交通

中图分类号:TP311.52 文献标识码:A 文章编号:1009-3044(2013)20-4689-03

1 概述

智能交通虚拟仿真作为仿真科学在智能交通领域的应用分支,以相似原理、信息技术、系统工程和智能交通系统(Intelligent Transportation Systems,ITS)[1-2]领域的基本理论和技术为基础,以计算机为主要工具,利用仿真模型模拟交通系统的运行状态并进行仿真评估,辅助交通工程理论研究及实际应用。

近年来,国内外对智能交通仿真及其关键技术的研究发展迅速,出现了大批对ITS系统效益进行分析和评价的仿真软件,在控制ITS的成本投入、降低风险、提供有效模拟智能交通手段以及提高ITS数据处理分析能力等方面起到了重要作用。但基于数据驱动进行智能交通虚拟仿真研究和实践的还很少,基于这一需求及有关项目支持,该文对与此相关的若干关键技术进行研究与探讨。

2 数据驱动的相关概念

2.1 数据驱动描述

数据驱动 (Data-driven) 概念的出现源自计算机科学领域,近些年其理论、应用等的研究都引起控制领域及及仿真应用领域等的重点关注。

在理论研究方面,主要集中在对数据驱动思想和概念、数据驱动应用方式、控制优化算法等的研究。数据驱动最初被视为一种适应性的仿真开发方法。在数据驱动的仿真模式中,数据驱动指任何应用需求都能够由系统数据及相关模型所描述,而无需进行再编程[3]。

以数据驱动思想为指导的应用涵盖控制、决策、调度和故障诊断等关键领域,包括制造过程控制、气候预报、交通管理、地理开采、生物传感等诸多具体应用,例如文献[4-5]所述。

在仿真应用领域,数据驱动的仿真开发方式备受关注。美国国家自然科学基金会(National Science Foundation,NSF)提出了动态数据驱动应用系统(Dynamic Data Driven Application Systems,DDDAS)的概念[6],为具有非线性、时变性、多变量和不确定性等特点的复杂大系统研究及仿真开辟了新途径。

2.2 进行本文研究的现实意义

以ITS技术核心交通数据信息的研究[7]为基础,引入实时交通数据信息,利用仿真技术手段,对交通控制与管理及信息服务进行仿真评估,辅助交通规划决策支持,为动态监控交通拥堵状况、演变趋势、预报预警等提供连续性的技术保障,成了智能交通仿真领域研究的热点所在。

数据驱动的智能交通虚拟仿真与其他方法的智能交通虚拟仿真相比,它除了可以利用离线数据之外,更注重仿真与实际系统的动态交互、在线流数据注入等宽范围应用。这给ITS控制与研究提供了一种新的探求方式,同时也为仿真技术的发展提供了新的研究课题。因此,研究数据驱动的智能交通虚拟仿真系统具有积极的理论意义和实践意义。

3 数据驱动的智能交通虚拟仿真体系结构

智能交通虚拟仿真体系结构从数据驱动的思想出发,旨在解决和仿真相关的全局性问题。从层次上可将该体系结构划分为数据、资源、平台和应用四个层次,如图1所示。该结构以充分获取各类交通数据和信息为基础,实现信息和资源共享,约束和协调模型调度,控制仿真系统的规范运行。各个层次的功能描述如下:

3.1 数据层

系统数据层是构建系统的依据,为系统的运行提供完备的数据支撑,供平台层调用,并贯穿整个虚拟仿真过程。

3.1.1 数据系统

包括数据源和数据采集两级结构。

3.1.2 数据析取

实现数据分析、挖掘、描述,并对各种数据进行融合与处理、数据交换,形成数据聚集和子集。

3.1.3 数据管理

实现数据的集中存储,建立数据字典,提供数据共享和显示服务。

3.2 资源层

集成系统所需的各类信息资源,包括知识库、模型库和方法库等三个系统模块,是系统运行的基础。

3.2.1 模型库系统模块

实现模型资源的集中存储,根据虚拟仿真控制要求,调用方法库中仿真过程控制智能求解算法,生成仿真最佳控制方案。

3.2.2知识库系统模块

实现对虚拟仿真控制问题的描述、仿真环境以及控制规则的存储,提供模型调用所需的如索引和环境描述等基本约束条件,并依据知识进行推理,辅助完成仿真模型的选取、生成、连接和评估等任务。

3.2.3方法库系统模块

实现对模型构建方法及求解优化算法、仿真过程分析算法及仿真评估方法的集中存储,为模型库提供智能求解算法,综合考虑多项仿真控制要求,确定仿真过程最佳协调控制方案。

3.3 平台层

系统平台层由服务化的系列工具组成,为仿真系统的分析、设计、开发、集成、运行和评估提供支持。平台层将资源层与应用层无缝连接,根据不同需要,为用户提供系列服务,支持仿真过程,是实现不同应用模式的关键。

3.4 应用层

根据不同应用模式的功能要求,仿真系统可以进行灵活定制和重构,生成不同应用配置,组成不同应用系统,支持不同应用模式。基于三类交通仿真模型,系统提供三种应用模式:宏观交通仿真模式、中观交通仿真模式和微观交通仿真模式。

4 关键技术

以大数据应用为基础,数据驱动的仿真比非数据驱动的仿真概念更为广泛,在理论上包含了仿真与测量系统的动态交互、流数据注入、宽范围应用和系统方法等思想和观点,在技术上融合了数据处理、算法、仿真计算、软件领域相关应用技术。以此为支撑,实现“比现阶段大部分应用领域更为精确和具备自校正能力的高层次应用仿真”[8]。

基于以上描述,数据驱动智能交通虚拟仿真研究的重点包括对海量时空数据的整合、不确定性的引入、应用算法对流数据的稳定响应、数据质量的评估、适应性的分布式仿真环境开发、有效应用所需动态数据信息等。为此需要解决以下主要关键技术:

4.1 虚拟仿真数据驱动技术

目前,基于离线数据的方法及其应用远胜于基于在线数据的方法[9]。在智能交通领域,随着ITS复杂化程度的提高,其数据来源向时空多尺度方向发展,要实现整个系统的建模非常困难,但采用传统的基于近似模型的方法仍然十分普遍。若仅将这类模型组合起来形成整体系统,则会忽视子系统间的联系,如变量间的关联性、系统的非线性等。从仿真控制角度而言,非数据驱动方法的虚拟仿真中,其数据并没有真正进入到“闭环”方式,而数据驱动的虚拟仿真系统中的数据既是出发点也是归宿,可以实现“闭环”控制,从而弥补传统方法的不足。主要关键技术包括:

1) 智能交通虚拟仿真系统数据驱动理论和数据驱动控制优化方法研究;

2) 虚拟仿真数据驱动方法和虚拟仿真模型驱动方法互补机制研究;

3) 虚拟仿真数据驱动软件实现技术。

4.2 面向智能交通虚拟仿真的数据处理技术

智能交通数据的变化呈现大数据化的趋势,具备数据量大、来源广、层次复杂等特点。随着网络技术的发展,面临的主要问题由如何采集和获取数据向如何有效利用数据转变。这要求数据处理过程适应数据特点并满足处理的及时性、准确性和可靠性等要求,完成数据的分类、挖掘、析取、融合、集成,并实施有效管理,增强数据信息描述的完备性、提高数据定义的标准化和规范化程度,支持复杂时空数据在系统层次上的统一表达,满足三种应用模式的需求。从当前数据分析处理技术的发展趋势上看,主要关键技术包括:

1) 基于数据挖掘、信息提取计算、机器学习等理论的交通数据分析和质量评估技术;

2) 基于元数据的领域异构数据交换技术;

3) 面向多类型数据源的数据仓库构建技术;

4) 基于共享数据资源的智能交通数据生产模型生成技术。

4.3 数据驱动的智能交通虚拟仿真环境

数据驱动的智能交通虚拟仿真技术是基于先进的数据管理技术、建模技术、分布并行虚拟仿真技术的综合应用技术,既包含离线仿真,又包含在线仿真。基于上述需求,构建恰当的仿真环境,支持知识、方法和模型的交互、调度和管理,解决仿真中的模型重用与互操作问题,满足不同应用模式下虚拟仿真运行的需求。

智能交通虚拟仿真环境是以基于数据驱动的仿真引擎开发为核心的仿真软件工具集的开发。仿真引擎是建立仿真系统的系列软件工具集,旨在提供一种手段,构造并管理仿真进程,支持不同应用模式的仿真系统。主要关键技术包括:

1) 数据驱动仿真引擎技术,包括管理各类模型、仿真流程、仿真运行状态等;

2) 支持数据驱动仿真引擎的并行仿真克隆技术,支持并提高多次重复仿真的执行效率;

3) 基于数据驱动的仿真模型开发与运行自动化技术,包括模型开发规范、模型参数标定、数据驱动框架代码自动生成等技术。

4.4 面向数据驱动智能交通虚拟仿真的决策支持理论与方法

在数据驱动的智能交通虚拟仿真运行过程中,会涉及到诸多半结构化和非结构化问题的求解。建立在大量的认知科学、现人工智能理论与方法、现代控制理论与方法等相关理论和技术基础上的决策支持系统可以为之提供有效支持。为此,必须建立领域知识库、模型库和方法库,用以存放各种规则、因果关系、仿真评估结果、不同层次的交通管理和先验预测信息等;还应有综合利用数据资源、知识库、模型库以及仿真评估结果对仿真进程进行推理和问题求解的推理机,支持仿真模型构建和优化及仿真进程控制优化。主要关键技术包括:

1) 基于高速网络系统的数据管理系统与智能决策支持系统集成框架,实现数据资源与智能决策支持的有机集成;

2) 支持智能交通虚拟仿真的领域知识处理框架与体系结构,建立领域知识处理模型;

3) 研究面向数据驱动的智能交通虚拟仿真的仿真评估技术,建立与仿真结果关联的数据信息平台,积累经验数据,为仿真运行提供支持和校验服务。

5 结束语

ITS等复杂应用领域虚拟仿真的需求在传统的模型驱动等方法和模式下并未得到充分的满足,结合控制领域前沿思想和理论,引入系统实时数据信息,对系统进行虚拟仿真和评估,是ITS控制与研究的一种新的探求,同时也为仿真技术的发展提供了新的研究课题。近年来数据处理技术、信息技术、计算机技术、先进仿真技术、专业学科领域研究和应用方面都得到了蓬勃发展,这

为数据驱动的智能交通虚拟仿真的研究提供了基础。该文旨在抛砖引玉,希望在数据驱动的智能交通虚拟仿真及其它相关技术的研究方面,姑且能作为一种有益的尝试。

参考文献:

[1] 王笑京, 齐彤岩, 蔡华. 智能交通系统体系框架原理与应用[M]. 北京: 中国铁道出版社, 2004.

[2] 张国伍. 智能交通系统工程导论. 北京: 电子工业出版社, 2003.

[3] Pidd M. Guidelines for the Design of Data Driven Generic Simulators for Specific Domains[J]. Simulation(S0037-5497). 1992, 59(4): 237-243.

[4] 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011,26(1):1-9.

[5] 孙博, 康锐, 谢劲松. 故障预测与健康管理系统研究和应用现状综述[J]. 系统工程与电子技术, 2007, 29(10): 1762-1767.

[6] NSF Workshop. Dynamic Data Driven Application Systems, NSF Workshop Report, March 2000 [R/OL]. (2006-2)[2006-8].

[7] John C. Miles, 陈干. 智能交通系统手册[M]. 王笑京,译. 北京: 人民交通出版社, 2007.

[8] Frederica Darema. Grid Computing and Beyond: The Context of Dynamic Data Driven Applications Systems [J]. Proceeding of the IEEE (S0018-9219), 2005, 93(3): 692-697.

[9] 方崇智, 萧德云. 过程辨识[M]. 北京: 清华大学出版社,1988.

推荐访问:仿真 智能交通 驱动 虚拟 数据